- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chudnovsky, Maria (2)
-
Karthick, T. (2)
-
Huang, Shenwei (1)
-
Kaufmann, Jenny (1)
-
Maceli, Peter (1)
-
Maffray, Frédéric (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The claw is the graph $$K_{1,3}$$, and the fork is the graph obtained from the claw $$K_{1,3}$$ by subdividing one of its edges once. In this paper, we prove a structure theorem for the class of (claw, $$C_4$$)-free graphs that are not quasi-line graphs, and a structure theorem for the class of (fork, $$C_4$$)-free graphs that uses the class of (claw, $$C_4$$)-free graphs as a basic class. Finally, we show that every (fork, $$C_4$$)-free graph $$G$$ satisfies $$\chi(G)\leqslant \lceil\frac{3\omega(G)}{2}\rceil$$ via these structure theorems with some additional work on coloring basic classes.more » « less
-
Chudnovsky, Maria; Karthick, T.; Maceli, Peter; Maffray, Frédéric (, Journal of Graph Theory)For a graph 𝐺 , let 𝜒(𝐺) and 𝜔(𝐺) , respectively, denote the chromatic number and clique number of 𝐺 . We give an explicit structural description of ( 𝑃5 , gem)‐free graphs, and show that every such graph 𝐺 satisfies 𝜒(𝐺)≤⌈5𝜔(𝐺)4⌉ . Moreover, this bound is best possible. Here a gem is the graph that consists of an induced four‐vertex path plus a vertex which is adjacent to all the vertices of that path.more » « less
An official website of the United States government
